# TAXONOMIC AND FUNCTIONAL ANALYSIS OF De novo transcriptomes with trapid 2.0



François Bucchini<sup>1,2</sup>, Andrea Del Cortona<sup>1,2</sup>, Michiel Van Bel<sup>1,2</sup> and Klaas Vandepoele<sup>1,2</sup> francois.bucchini@psb.vib-ugent.be

1. Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium 2. VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium

#### BACKGROUND

 Recent technological advances in sequencing have made it possible to take a snapshot of gene expression in a specific tissue, condition, unicellular organism, or community.

 The explosion of transcriptome RNA-Seq data comes at the cost of new challenges, as reference genomes are rarely available.

#### **TRAPID 2.0 WORKFLOW OVERVIEW**

TRAPID 2.0's workflow (Fig. 1) consists of **two distinct phases**: an **initial processing phase**, and an **exploratory phase** that enable users to perform functional & comparative analyses interactively from the web application.



In the absence of genome sequences,
 *de novo* assembled transcriptomes
 represent a basis for investigating the
 gene repertoire of previously
 uncharacterized organisms.

*De novo* transcriptomes are however
 **challenging to analyze** and interpret.
 They often contain fragmented,
 spurious or contaminant sequences.

• To mitigate some of these challenges, we developed TRAPID 2.0, a **web application** for the fast and efficient **processing of assembled transcriptome data**.

### **D** INPUT DATA AND METATRANSCRIPTOME PROCESSING



• TRAPID 2.0 takes any set of **assembled transcripts** as input.

• To demonstrate its efficiency in

## **2** TRAPID 2.0 REFERENCE DATABASES

- Collections of **functionally annotated sequences** from multiple species, clustered in precomputed **gene families** (GFs).
- Reference databases (Table 1): **broad phylogenetic range**, high-quality backbone

extracting biological knowledge from **metatranscriptomics data**, we used TRAPID 2.0 to study functional variations in **diatomdominated phytoplankton communities** from the Antarctic peninsula (Fig. 2, data from Pearson et al. 2015).

**Fig. 2:** Sampling locations (**A**) and processing (**B**) of metatranscriptomes from diatom-dominated communities. BFS: Bransfield Strait; WDS: Weddell Sea; WKI: Wilkins Ice Shelf. Panel A adapted from Pearson et al., 2015.

# **3 ORF FINDING: NON-CANONICAL GENETIC CODE SUPPORT**

- **Homology-supported** ORF sequence detection using non-canonical genetic code.
- Impact of appropriate genetic
   code use confirmed by processing
   16 ciliate MMETSP transcriptomes
   with TRAPID 2.0 (Fig. 3).



### **5** TRANSCRIPT SUBSETS ANALYSIS AND COMPARISON

The analysis of transcript subsets can provide additional biological insights.
Available analyses: exploration of the relationships between subsets, functional annotations, and GFs (Fig. 2A); functional enrichment (Fig. 2B); and subset functional annotation comparison.

for the comparative genomics features of TRAPID 2.0.

**Table 1:** Overview of TRAPID 2.0 reference databases. The gene family count only includes homology-based for PLAZA databases, and only orthologous groups at the root level for EggNOG 4.5.

|                   | PLAZA 4.0 dicots | PLAZA 4.0 monocots | Pico-PLAZA 2.0                    | EggNOG 4.5                      |
|-------------------|------------------|--------------------|-----------------------------------|---------------------------------|
| # Species         | 55               | 29                 | 19                                | 2,031                           |
| # Genes           | 3,065,012        | 1,056,271          | 302,559                           | 14,116,949                      |
| # GFs             | 208,456          | 154,839            | 68,827                            | 190,803                         |
| Taxonomic focus   | Dicot plants     | Monocot plants     | Photosynthetic<br>microeukaryotes | Archeae, Bacteria,<br>Eukaryota |
| Funct. annotation | GO, InterPro     | GO, InterPro       | GO, InterPro                      | GO, KO                          |
| GF construction   | Tribe-MCL        | Tribe-MCL          | Tribe-MCL                         | EggNOG                          |

# **4** TAXONOMIC CLASSIFICATION OF TRANSCRIPTS

- Purpose: **flagging of potential contaminants**, examination of the **taxonomic composition** of complex samples. Supported by interactive vizualisations (Fig. 4).
- Performed using **Kaiju**, a tool particularly adapted to classify sequences of organisms from phylogenetic clades that are under-represented in databases.





**Fig. 5:** Analysis of 49,998 WKI-specific transcripts (data from ). (A) Sankey diagram depicting the relationships between WKI-specific transcripts (left blocks), significantly enriched IPR domains (middle blocks) and Pico-PLAZA GFs (right blocks). Line width is proportional to transcript annotation (left lines) and GF membership (right lines). (B) WKI-specific transcripts GO enrichment results. GO terms are represented on the x-axis, enrichment p-value on the left y-axis (black dots), and enrichment score on right y-axis (red bars). Maximum enrichment p-value threshold is 1E-3 and only biological process GO terms are displayed.





